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Many real-world optimization problems involve uncertain parameters with probability distributions that can

be estimated using contextual feature information. In contrast to the standard approach of first estimating

the distribution of uncertain parameters and then optimizing the objective based on the estimation, we

propose an integrated conditional estimation-optimization (ICEO) framework that estimates the underly-

ing conditional distribution of the random parameter while considering the structure of the optimization

problem. We directly model the relationship between the conditional distribution of the random parame-

ter and the contextual features, and then estimate the probabilistic model with an objective that aligns

with the downstream optimization problem. We show that our ICEO approach is asymptotically consis-

tent under moderate regularity conditions and further provide finite performance guarantees in the form of

generalization bounds. Computationally, performing estimation with the ICEO approach is a non-convex

and often non-differentiable optimization problem. We propose a general methodology for approximating

the potentially non-differentiable mapping from estimated conditional distribution to optimal decision by

a differentiable function, which greatly improves the performance of gradient-based algorithms applied to

the non-convex problem. We also provide a polynomial optimization solution approach in the semi-algebraic

case. Numerical experiments are also conducted to show the empirical success of our approach in different

situations including with limited data samples and model mismatches.

Key words : contextual stochastic optimization; prescriptive analytics; statistical learning theory

1. Introduction

Two fundamental aspects of decision-making under uncertainty are estimation and optimization.

Classically these two aspects are treated separately, with statistical and/or machine learning

methodologies used to estimate the distributions of uncertain parameters based on data, resulting

in a stochastic optimization problem to be solved for making a decision. In recent years, researchers

and practitioners have increasingly recognized the significance of considering estimation and opti-

mization in tandem (Bertsimas and Kallus 2020, Kao et al. 2009, Donti et al. 2017, Elmachtoub
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and Grigas 2021). Another salient feature of modern decision-making under uncertainty is the pres-

ence of contextual information, usually in the form of features/covariates, that can be leveraged

to improve the estimation of the uncertain parameters. For example, contextual information such

as temporal information, the presence of promotions, and economic indicators can be leveraged to

refine the estimation of uncertain demand for products. The refined demand distribution estimates

would then be used for making inventory and supply chain decisions through optimization models.

Contextual stochastic optimization (CSO) has recently emerged as a general paradigm describ-

ing this situation, with applications in supply chain management, finance, transportation, energy

systems, and many other areas.

In this work, we consider the CSO problem in a data-driven setting where one has available

historical data consisting of realizations of the uncertain parameters paired with contextual feature

information. As mentioned, the classical method of solving CSO given data is a two-step procedure,

where in the first step either a point prediction of the parameter or an estimation of its distribution

is built based on data. (Although the phrases “prediction” and “estimation” are often synonymous

or not clearly distinguished in the literature, herein we specifically let “prediction” denote point pre-

dictions of the random parameter and let “estimation” refer to any methodology, either parametric

or non-parametric, for estimating the conditional distribution of the random parameter given the

context.) Modern machine learning techniques are often utilized in the first step to provide more

granular results, and these models are usually fit based on statistical objectives such as measures

of prediction error or likelihood. Then in the second step, given the prediction or estimation, an

optimization problem is solved. A major drawback of these standard predict-then-optimize (PTO)

and estimate-then-optimize (ETO) approaches is that they do not consider the decision error – the

cost with respect to the downstream optimization problem due to an imperfect prediction – when

fitting a statistical model.

We propose an integrated conditional estimation-optimization (ICEO) approach that estimates

the underlying conditional distribution of the random parameter based on minimizing the ultimate

decision error. We propose a highly flexible framework that models the conditional distribution

using a hypothesis class and apply ideas from statistical learning to do estimation. As compared

to existing approaches, our approach uses a generic learning framework based on specifying a

hypothesis class and applies to a broad class of convex contextual stochastic optimization problems

with uncertainty in the objective. Many previous approaches either rely heavily on the structure of

the downstream problem, for example a linear (Elmachtoub and Grigas 2021) or newsvendor (Ban

and Rudin 2019) problem, or propose a variation on a specific learning algorithm like random forests

(Kallus and Mao 2020). In addition, related approaches based on “end-to-end learning” (see, e.g.,

Donti et al. (2017), Wilder et al. (2019b)) usually do not directly model the conditional distribution
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of uncertain parameters as we do in the ICEO framework and lack strong theoretical guarantees. We

further discuss the relationship between the ICEO framework and existing approaches in Section

1.1.

In addition to proposing the flexible ICEO framework that models the conditional distribution

of uncertain parameters in a way that accounts for the downstream optimization cost, we consider

the statistical and computational properties of our approach. In particular, we prove asymptotic

consistency in terms of risks, decisions and hypotheses. Asymptotic consistency is highly desired

for data-driven methods because it guarantees that, as the amount of data increases, our solutions

and estimated models converge to their optimums given full information of the true distribution

of contextual features and uncertain parameters. We prove asymptotic consistence of the ICEO

risk and induced decisions only under the assumption that the hypothesis class is compact, and

consistency of the hypothesis requires an additional assumption related to the uniqueness of the

true hypothesis. We also provide generalization bounds to quantify the out-of-sample performance

when data is limited to a finite sample. To induce desirable generalization properties, we introduce

a strongly convex decision regularization function to stabilize the ICEO decision and to eliminate

potential multiple optimal decisions. The strongly convex regularization guarantees the Lipschitz

property of the regularized optimal solution mapping, and the resulting generalization bounds are

constructed based on multi-variate Rademacher complexity. In terms of computation, the core

training problem of the ICEO framework is non-convex and even non-differentiable in many cases.

In fact, due to the presence of constraints in the downstream problem, it is often the case that

the optimal decision oracle has a piece-wise constant shape, which leads to poor local minima that

are very hard to escape when applying gradient-based methods. For these reasons, we propose

two computational approaches: (i) a highly practical approach that involves approximating the

regularized optimal solution oracle with a smooth function and then applying gradient algorithms,

and (ii) a polynomial optimization approach when the downstream problem has a semi-algebraic

objective and we approximate the optimal solution oracle with a polynomial function.

Our key contributions are summarized as follows:

1. We propose the ICEO framework, wherein we directly estimate the underlying conditional

distribution of uncertain parameters given contextual information using a hypothesis class.

In contrast to two-step ETO methods, we learn the conditional distribution in a way that

integrates with the downstream optimization goal. ICEO offers more flexibility compared to

most existing related approaches.

2. We prove asymptotic consistency of the ICEO method when the model i specified correctly

(Theorem 1). More specifically, we show the consistency of ICEO risk, ICEO decisions, and
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ICEO hypothesis when the hypothesis class contains the correct conditional distribution func-

tion. The consistency in risk and decisions hold for arbitrary compact hypothesis classes. To

guarantee the consistency in hypothesis, we require an additional assumption related to the

uniqueness of the true hypothesis.

3. To quantify the out-of-sample performance with finite samples, we provide generalization

bounds for the ICEO method based on the multi-variate Rademacher complexity of the

hypothesis class used to learn the conditional distribution (Theorem 3). The generalization

bound is based on the Lipschitz property of the regularized optimal decision oracle (Proposi-

tion 1).

4. The ICEO training problem is non-convex and non-differentiable. Non-differentiability poses

a serious concern when applying gradient-based algorithms, like (stochastic) gradient descent,

to solve the ICEO training problem as the presence of constraints can lead to local minima

that are hard to escape (visually illustrated in Figure 1). To address this issue, we approximate

the oracle using differentiable function classes with a guaranteed approximation error (Propo-

sition 2, Proposition 3). We then provide corresponding generalization bounds when training

ICEO method using the approximated oracle (Theorem 4). In addition, for the case where

the nominal optimization problem is semi-algebraic, we propose an exact solution algorithm

(Proposition 4).

The remainder of this paper is organized as follows. In Section 1.1, we review related methods in

literature. The details of our proposed ICEO framework are introduced in Section 2. In Section 3,

we provide performance guarantees in terms of asymptotic consistency and generalization bounds.

In Section 4, we discuss the main difficulties in solving the ICEO formulation and provide solution

methods. Empirical performance of the ICEO method is demonstrated in Section 5.

1.1. Relevant Literature

The fusion of prediction models based on data and the optimization problems has become more

and more widespread in recent years. In the remainder of this section, we will discuss existing

works related to this topic and contrast them with our proposed ICEO approach.

The first stream of research focuses on providing a prescriptive solution by approximating the

conditional distribution of the random parameter given a feature vector, with the help of vari-

ous machine learning tools. Bertsimas and Kallus (2020) first proposed prescriptive models that

approximate the conditional distribution with a weighted empirical distribution of the uncertainty.

The weights can be achieved based on multiple machine learning models, including k-nearest neigh-

bors (KNN), kernel methods, tree-based methods, etc. A later work Bertsimas and McCord (2019)

investigates these prescriptive methods in the multi-period problem setting. Bertsimas et al. (2019)
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follows the same idea and propose a tree-based algorithm that balances the optimality of the pre-

scription and accuracy of the prediction. Kallus and Mao (2020) consider a random forest model for

the prescriptive solution. In contrast to the standard way of splitting the feature space, the authors

consider the down stream optimization quality while constructing the partitions. Ho and Hana-

susanto (2019) considers the regularized Nadaraya-Watson approach and establish performance

guarantees using moderate deviations theory.

Another stream of related work investigates adjusting the loss function to meet the ultimate

optimization goal while training the machine learning models to predict the random parameters.

Ban and Rudin (2019) investigates the Newsvendor problem, which is inherently equivalent to

a quantile prediction problem. The authors learn the feature-to-decision mapping from data by

adopting a loss function that characterizes the newsvendor inventory cost, and is equivalent to

the quantile loss function. Following a similar setting, Qi et al. (2020a) discuss the performance

guarantees of such an approach when there are inter-temporal dependencies and non-stationarities.

Elmachtoub and Grigas (2021) consider the case when the downstream optimization problem has

a linear objective. The authors propose a “smart predict-then-optimize” (SPO) framework with a

tractable convex surrogate loss function (SPO+) to integrate the ultimate optimization problem

structure. They prove Fisher consistency of SPO+ and demonstrate its strong numerical perfor-

mance on different problem classes. Balghiti et al. (2019) later provide finite-sample performance

guarantee of the SPO loss in the form of generalization bounds. Recently, Liu and Grigas (2021)

have strengthened the consistency of SPO+ by providing risk guarantees and a calibration analysis

in the polyhedral and strongly convex cases. Elmachtoub et al. (2020) propose a method to train

decision trees using the SPO loss and demonstrate its excellent numerical performance and lower

model complexity.

Other existing studies aim to learn the task-based end-to-end learning models with differentiable

optimization layers. Donti et al. (2017) consider a general setting where the optimization stage

involves a convex optimization problem and adopt the objective in the optimization stage as the loss

function to achieve an end-to-end training for the machine learning models. The main issue in such

end-to-end learning models is to address the non-differentiability of the optimal solution mapping

(the mapping from a contextual feature vector to the optimal decision). Amos and Kolter (2017)

introduce the differentiable optimization layers for the end-to-end training approaches and propose

a method of approximating the gradient of the optimal solution mapping by the solution of a group

of equations representing the KKT conditions. Agrawal et al. (2019) further provide a method to

convert convex programs to the canonical forms that can be implemented at the optimization layer

and implemented their grammar in CVXPY for ease of use. Wilder et al. (2019a) and Wilder et al.

(2019b) further consider more difficult combinatorial problems. They propose end-to-end models



6 Grigas, Qi, Shen: Integrated Conditional Estimation-Optimization

that map from the graph structure to a feasible solution and train them with the quality of the

solution. Wilder et al. (2019a) consider continuous relaxations of the discrete problem to propagate

gradients through the optimization procedure. Mandi and Guns (2020) consider mixed integer linear

programs and consider a homogeneous self-dual formulation of the LP and show that the gradients

are related to an interior point step. Berthet et al. (2020) instead consider stochastically perturbed

optimizers to evaluate the gradients required for back-propagation. Mandi et al. (2020), Ferber et al.

(2020), Pogančić et al. (2019) also discuss how to approximate the gradients when training end-to-

end models for combinatorial problems. As our work focuses on convex optimization problems, we

skip the details and refer to Kotary et al. (2021) for a detailed survey. Although demonstrated to

be competitive in numerical experiments, these end-to-end learning models based on optimization

layers and their extensions to combinatorial cases lack strong performance guarantees in theory.

Moreover, learning the feature-to-decision mapping lacks flexibility in the way that it handles

constraints. Indeed, constraints restricts the hypothesis class that can be used to learn the data-

to-decision mapping. In contrast, our ICEO framework learns the conditional distribution and use

the optimal solution mapping to obtain the decision, which is more flexible in handling constraints.

We also comment on the difference between the problem setting of ICEO and the joint estimation-

optimization (JEO) model (Jiang and Shanbhag (2013), Ahmadi and Shanbhag (2014), Jiang and

Shanbhag (2016), Ho-Nguyen and Kılınç-Karzan (2019)). The major difference is that, in the JEO

model, there is no contextual information considered as predictors of the uncertainty. Besides,

several JEO models focus on solving an online convex optimization problem in the optimization

stage, while we consider a stochastic optimization problem. We would also like to point out the

differences in the problem setting of ICEO and the operational statistics method, in which the

downstream optimization goal is considered in finding the optimal operational statistic (Liyanage

and Shanthikumar (2005), Chu et al. (2008), Ramamurthy et al. (2012)). We include the contextual

information in our problem setting which is not considered in the classic operational statistics

literature. Moreover, we aim to learn the underlying conditional distribution rather than finding

the best statistic. We also consider constraints in the downstream optimization problem.

Other related works include Ho-Nguyen and Kılınç-Karzan (2020), which investigates the rela-

tionship between the prediction part to the performance of the optimization part, mainly in the

case of the least squares loss function. Butler and Kwon (2021) focuses on the mean-variance port-

folio optimization problem and integrates regression based predictive models with the optimization

setting. The authors provide closed-form analytical solutions for the unconstrained cases. Qi et al.

(2020b) instead focuses on a multi-period inventory management problem with random demand

and leadtime, and provide a practical end-to-end learning framework empowered by deep learning

models. The authors demonstrate the empirical success of this approach in practice by conducting

a field experiment in industry.
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2. Contextual Stochastic Optimization and the ICEO Approach

In this section, we review the basic ingredients of contextual stochastic optimization problems,

which is a fundamental model for applying machine learning in many operational contexts, and

we formally describe our ICEO approach. We consider a convex CSO, which models a downstream

decision-making task. The feasible region for the decision variable w ∈ Rd, denoted by S ⊂ Rd, is

assumed to be known with certainty. We additionally assume that S is a convex and compact set.

Although the feasible region of our optimization task is known with certainty, the objective function

c(·, ξ) : S→R is stochastic and depends on a random parameter ξ. We assume that, for all values

of ξ, c(·, ξ) is a convex function of w. While the precise value of ξ is not known at the time when

a decision must be made, we assume that the decision maker observes an associated contextual

feature vector x ∈X ⊆Rp (sometimes the components of x are referred to as covariates) that can

be used to learn information about the objective function. Let D denote the joint distribution

of x and ξ. Then, given an observed x ∈ Rp, the decision maker’s goal is to solve the contextual

stochastic optimization problem:

min
w∈S

Eξ[c(w,ξ)|x], (1)

where the expectation above is with respect to the conditional distribution of ξ given x.

It is important to emphasize that the distribution D, and hence the conditional distribution

of ξ given any x, is typically unavailable in practice. Instead, a data-driven approach to solving

(1) is much more viable. Indeed, one often has available a training dataset {(xi, ξi)}ni=1 consisting

of historically observed pairs of feature vectors xi ∈ X and associated parameter values ξi. If the

dataset {(xi, ξi)}ni=1 is an independent and identically distributed sample from the distribution D,

for example, then it may be possible to learn enough information about the conditional distribution

to solve problem (1). Note also that, as pointed out by Bertsimas and Kallus (2020) for example,

due to the nonlinearity of the objective function, a point estimate for a prediction of ξ given

x usually does not provide enough information about the conditional distribution to produce a

reasonable solution of (1). In general, without any additional structural assumptions, e.g., on either

the random parameter ξ, the distribution D, or the cost functions c(·, ·), adequately learning the

conditional distribution for all relevant x may be an intractable problem.

In this work, we consider the case where the random parameter ξ has finite discrete support,

i.e., ξ ∈Ξ := {z̃1, z̃2, . . . , z̃K}. Then, for any x∈X , the conditional distribution of ξ given x is char-

acterized by a probability vector p∗(x) ∈∆K , where ∆K := {p ∈ RK :
∑K

k=1 pk = 1, p≥ 0} denotes

the (K − 1)-dimensional unit simplex. That is, p∗k(x), the k-th component of p∗(x), is defined by

p∗k(x) = Pξ(ξ = z̃k|x), for all k = 1, . . . ,K. Using this notation as well as the shorthand notation

ck(·) := c(·, z̃k) for all k= 1, . . . ,K, problem (1) can be equivalently written as

min
w∈S

Eξ[c(w,ξ)|x] = min
w∈S

K∑
k=1

p∗k(x)ck(w). (2)
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2.1. ICEO Approach

Let us now describe the major ingredients of our ICEO approach, as well as the formulation of our

ICEO training problem.

Hypothesis Class of Conditional Probability Estimators It is evident from the right side of (2)

that learning the conditional distribution p∗(x) is the most critical part of our contextual stochastic

optimization setting. We adopt standard ideas from learning theory to learn p∗(x), whereby we

employ a compact hypothesis class H of conditional probability estimators. That is, H is a compact

set (e.g., with respect to the uniform norm) of functions f : X →∆K . The hypothesis class H is

the first major ingredient of our ICEO approach. Note that the constraint on the output of f ∈H,

namely f(x)∈∆K for all x∈X , is not standard in most learning problems but is necessitated by our

setting. Fortunately, this constraint can be accommodated in a number of ways. A straightforward

approach is to consider the softmax operator soft : RK → RK defined by softk(v) = exp(vk)∑K
j=1 exp(vj)

for v ∈ RK . Then, given any hypothesis class H̃ of unconstrained functions f̃ : X → RK , we can

define H as the composition class soft ◦ H̃. Note that, due to the differentiability properties of the

softmax operator, soft◦ H̃ naturally inherits differentiability properties from H̃, which can be very

useful from a computational perspective. For another example, consider H defined by a decision

tree partitioning algorithm. Then, for any given x, f(x) can be constructed from the empirical

distribution of ξ restricted to the subset of the partition of the training data for which x lies in.

Finally, a third approach, which we expand upon in Section 4.3, is to let H be a constrained linear

hypothesis class whereby H= {f : f(x) =Bx ∈∆K for all x ∈ X}. Depending on the structure of

X , it may be possible to efficiently model the constraint Bx ∈∆K for all x ∈ X , and we discuss

specific examples in Section 4.3. We would like to emphasize two points about our approach for

estimating the conditional distribution using a hypothesis class H. First, by directly estimating

the conditional probability our proposed method has more flexibility in handling constraints as

compared to methods that learn a mapping π directly from features x to decisions w. In particular,

the approach of learning a mapping from features to decisions requires that the output of the

mapping π be feasible in the region S, which may severely constrain the feasible set of π. On the

other hand, our approach of composing a user-specified hypothesis class H with the regularized

optimal solution mapping wρ(·) allows for a very general selection of H. In particular, the only

requirement to achieve asymptotic consistency is compactness ofH, and, to provide a generalization

bound, we further need H to have bounded multivariate Rademacher complexity.

Regularized Optimization Oracle. As mentioned previously, we assume that the functions ck(·) =

c(·, z̃k), for all k= 1, . . . ,K, are all convex functions of w on the convex and compact feasible region

S. We additionally assume that these functions are computationally tractable in practice, in the

sense that any weighted combination of these functions can be efficiently optimized. Furthermore,
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we presume that we can additionally work with a decision regularization function φ(·) : S → R,

which is non-negative and strongly convex with respect to some norm ‖ ·‖ on Rd. Given any p∈∆K

and ρ> 0, define the regularized optimal solution mapping:

wρ(p) :=arg min
w∈S

K∑
k=1

pkck(w) + ρφ(w). (3)

Note that, due to the strong convexity of φ(·), wρ(p) is uniquely defined. Furthermore, we can

show that wρ(·) is a continuous mapping as demonstrated in Lemma 2. These regularity properties

induced by the use of the regularization term φ(·) are crucial for developing our ICEO methodology

as well as for proving associated theoretical guarantees. For computational purposes, we assume

that wρ(p) can be efficiently computed in practice for any p∈∆K and ρ> 0. For example, we may

compute wρ(p) using a commercial solver or a specialized algorithm that depends on the structure

of the ck(·) and φ(·) functions. Ideally, the function φ(·) should be chosen so that the complexity of

computing wρ(p) is not greatly increased as compared to when ρ= 0. Note that our performance

guarantees developed in Section 3 hold for any choice of φ(·) that is strongly convex. When φ(·) is

not present there may be multiple optimal solutions of (3), and we use the notation W (p) to refer

to the set of such optimal solutions, i.e., W (p) := arg minw∈S
∑K

k=1 pkck(w).

ICEO Methodology. We are now ready to describe our ICEO methodology and corresponding

training problem, whereby we consider an integrated approach that estimates a hypothesis f ∈H in

consideration of the downstream optimization goal. We presume that we have collected a training

dataset {(xi, ξi)}ni=1 consisting of historically observed pairs of feature vectors xi ∈X and associated

parameter values ξi. We also presume that the decision maker uses the regularized optimal solution

oracle wρ(·) defined in (3). We adopt the empirical risk minimization (ERM) principle with respect

to the regularized in-sample cost induced by the regularized oracle:

min
f∈H,w1,...,wn∈S

1

n

n∑
i=1

c(wi, ξi) + ρφ(wi) (ICEO-ρ)

s.t. wi =wρ(f(xi)),

where ρ > 0 is a given value of the decision regularization parameter, which can be chosen with

cross validation for example. Let f̂ ∈H denote a computed optimal solution of (ICEO-ρ). Then, for

any newly observed feature vector x∈X , the decision maker implements the decision wρ(f̂(x))∈ S

formed by composing wρ(·) with f̂(·).

Let us contrast the ICEO approach with two more standard approaches: predict-then-optimize

(PTO) and estimate-then-optimize (ETO). Note that the phrases “predict” and “estimate” are

closely tied in the literature and there is no agreed upon consistent way to distinguish between

the two. In our context, we specifically use “predict” to refer to point predictions of the random
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parameter ξ and “estimate” to refer to any methodology for estimating the conditional distribution

of ξ given any x ∈ X . Specifically, in the PTO approach, a machine learning model ĝPTO : X → Ξ

is built, using the training data, to predict the parameter ξ based on the feature vector x. Then,

given any new x ∈ X , the decision maker implements a decision from the optimal solution set

arg minw∈S c(w, ĝPTO(x)). As mentioned previously, due to the nonlinearity of the objective, a point

estimate for a prediction of ξ is generally too simplistic to provide a reasonable solution of (1).

Indeed, unless the conditional distribution is guaranteed to be a point mass, then the PTO approach

is not suitable for nonlinear problems. In the case when the objective is linear, a point estimate is

actually sufficient and PTO approach is viable. In this linear case, Elmachtoub and Grigas (2021)

propose a “smart predict-then-optimize (SPO)” approach that aims to minimize the downstream

optimization cost. Furthermore, in this linear case the ICEO approach proposed herein (without

regularization) reduces to the SPO problem proposed by Elmachtoub and Grigas (2021).

Returning to the nonlinear case studied herein, the ETO approach learns a model f̂ETO :X →∆K

for estimating the conditional distribution of ξ given x. Then, given any new x ∈ X , the decision

maker implements a decision from the optimal solution set W (f̂ETO(x)). Thus, the ETO approach is

more aligned with the ICEO approach. The main distinction is that the traditional ETO approach

learns the model f̂ETO in a way that is completely oblivious to the downstream optimization task.

For instance, given a hypothesis class H, the ETO approach might select the hypothesis by min-

imizing the empirical cross-entropy loss, defined for any f ∈ H and any observed (x, ξ = z̃k) by

`ce(f(x), ξ = z̃k) :=− log(fk(x)). Alternatively, one may consider a purely non-parametric method

for estimating the conditional distribution such as the k-nearest neighbors or CART algorithms

for example. In these cases, and several others, Bertsimas and Kallus (2020) demonstrate asymp-

totic consistency properties of the ETO approach. Kallus and Mao (2020) consider using a (non-

parametric) random forests estimator of the conditional distribution in a way that is trained with

respect to the cost of the downstream optimization task, akin to the ICEO approach. On the other

hand, the ICEO approach directly models the underlying conditional distribution using a hypoth-

esis class H. Thus, while Kallus and Mao (2020) only provide asymptotic consistency results, we

are able to prove both asymptotic consistency and generalization bounds for a wide variety of

hypothesis classes.

Additional Notation. Due to the compactness of S, the cost function c(·, ·) is bounded and we

define c̄ := supw∈S,ξ∈Ξ c(w,ξ). Because of the compactness of S, we can define diameters of S. We

let diamj(S) := supu,v∈S |uj − vj| to denote the coordinate-wise diameter of the feasible region S.

We further let diam(S) :=
∑d

j=1 diamj(S) denote the summation of the coordinate-wise diameter

of all coordinates. Given a norm ‖ · ‖ defined on Rd, the distance from a point w ∈ Rd to a set

W ⊆ Rd is denoted by dist(w,W ) := infu∈W ‖w − u‖. For a convex function h(·) : S → R, we let
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∂h(w) denote the set of subgradients of h(·) at w. Let ◦ denote the composition of functions.

For example, with f : X → ∆K and w : ∆K → S, then w ◦ f is the function from X to S with

(w ◦ f)(x) := w(f(x)) for all x ∈ X . This function composition notation also extends naturally to

function classes. For example, for a class H of functions f :X →∆K , we let w ◦H denote the class

of functions {w ◦ f : f ∈H}. We denote the set of non-negative integers a N0 and let Nk0 denote the

set of all k-dimensional vectors with each component is a non-negative integer. 1 denotes the K-

dimensional vector with all coordinates taking the value of one. We let TV(P,Q) denote the total

variation between two probability measures P and Q supported on the K-dimensional simplex ∆K .

TV(P,Q) :=
∑

A∈B |P(A)−Q(A)| where B denote the class of Borel sets in ∆K . In Section 4.1, we

will use an equivalent expression of TV(P,Q) = 1
2

supf :∆→[−1,1](
∫

∆K
f(p)dP(p)−

∫
∆K

f(p)dQ(p)).

2.2. Motivating Examples

In this section, we present a few motivating examples for the ICEO framework, some of which will

be revisited in our numerical experiments in Section 5.

Example 1 (Multi-item Newsvendor). The multi-item Newsvendor problem aims to find

the optimal replenishment quantities for d different products. We let ξ := (ξ1, . . . , ξd) denote the

random demand of d products and let w ∈Rd denote the associated order quantities. The demand

values ξ might be related to contextual information such as promotions, holiday seasons, brand

information, etc. The objective of this problem is the total inventory cost including the holding

costs hl and stockout costs bl, which characterize the over-stock and under-stock, respectively. The

objective cost can be formulated as

c(w,ξ) :=
d∑
l=1

hl(wl− ξl)+ + bl(ξl−wl)+, (4)

where the function (·)+ is defined as max{·,0}. Moreover, we consider a budget capacity constraint

C > 0 on the total order quantities and formulate the feasible set as

S := {w :
d∑
l=1

wl ≤C,w≥ 0}.

Example 2 (Risk-Averse Portfolio Optimization). We consider the problem of finding

an optimal risk-averse portfolio of d assets. We denote the random vector of asset returns by

ξ ∈Rd, which may be associated with the contextual information such as economic indicators, news

headlines, etc. The decision maker aims to find the best allocation of assets w ∈Rd that optimizes

a weighted combination of the expected return and variance of the portfolio. By introducing an

auxiliary variable w0 ∈R, we formulate the objective as

c(w,w0, ξ) := α

(
d∑
l=1

wlξl−w0

)2

−
d∑
l=1

wlξl, (5)
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where α > 0 is a trade off parameter. Note that the expectation of the first term in (5) is

αEξ
[
(
∑d

l=1wlξl−w0)2
]
, which represents the variance of the investment return Var(

∑d

l=1wlξl)

when w0 is optimally selected as w0 = Eξ
[∑d

l=1wlξl

]
, while the second term is the return of the

portfolio. Therefore, Eξ[c(w,w0, ξ)] trades off between minimizing the variance and maximizing the

expected return of the portfolio. As is standard in the classical portfolio optimization problems,

we constrain the portfolio decision in the simplex ∆d = {w ∈Rd :
∑d

l=1wl = 1,w≥ 0} and we have

S := {(w,w0) :w ∈∆d,w0 ≥ 0,0≤w0 ≤ Ξ̄}, (6)

where Ξ̄≥ 0 is a known upper bound the maximum of the returns ‖ξ‖∞.

Example 3 (Minimum Convex Cost Flow Problem). Many applications such as urban

traffic system and area transfers in communication networks can be formulated as a minimum

convex cost flow problem (we refer to Chapter 14 of Ahuja et al. (1988) for more details). In the

minimum convex cost flow problem, the decision-maker aims to find the maximum flow that min-

imizes the associated cost on the edges. The cost is a convex function of flow and depends on a

random parameter. Suppose we consider a directed graph with d edges and the random parameter

ξ ∈Rd. In this problem, we consider the objective function

c(w,ξ) =
d∑
i=1

g(wi, ξi)

where g is a convex function of wi. Similar to the standard network flow problem, we let the matrix

A denotes the node-arc incidence matrix of the graph and restrict the flow on each edge in the

region [l, u]. Therefore, we have the feasible region

S = {w ∈Rd :Aw= 0,w ∈ [l, u]d}.

3. Performance Guarantees

In this section, we demonstrate asymptotic consistency and finite-sample performance guarantees

of the ICEO approach. Let us first introduce some additional notation. We state our results in

terms of arbitrary policy mappings π :X → S, which represent any mapping from the feature space

X to the set of feasible decisions S. Our main interest herein is the class of policies that combine

the optimal solution mapping and hypothesis f , i.e., Π = wρ ◦ H. This class of policies includes

the policy learned by the ICEO approach as well as policies learned by ETO approaches. In the

remaining part of this work, we let f∗ : X → ∆K denote the function that maps from x to the

true conditional distribution p∗(x). We refer to f∗ as the true hypothesis. Moreover, we define

w(·) : ∆K → S as a function that arbitrarily outputs a value from the optimal solution set W (·),
i.e., w(p)∈W (p) = arg minw∈S

∑K

k=1 pkck(w) for all p∈∆K .

To quantify our performance guarantees, we define the following risk functions for any policy π

and given regularization parameter ρ≥ 0:



Grigas, Qi, Shen: Integrated Conditional Estimation-Optimization 13

1. R̂n(π;ρ): The empirical regularized risk, for any given regularization parameter ρ ≥ 0, with

respect to a given sample {(xi, ξi)}ni=1, i.e.,

R̂n(π;ρ) :=
1

n

n∑
i=1

c(π(xi), ξi) + ρφ(π(xi)). (7)

2. R(π;ρ): The expected regularized risk, for any given regularization parameter ρ ≥ 0, with

respect to the underlying joint distribution D of x and ξ, i.e.,

R(π;ρ) :=Ex,ξ [c(π(x), ξ) + ρφ(π(x))] =Ex

[
K∑
k=1

p∗k(x)ck(π(x)) + ρφ(π(x))

]
, (8)

where p∗k(x) = Pξ(ξ = z̃k|x) for all k= 1, . . . ,K.

We also use the short hand notation R̂n(π) := R̂n(π; 0) and R(π) :=R(π; 0) to denote the unreg-

ularized empirical and expected risks, respectively. Note that R̂n(·;ρ) is the objective function of

(ICEO-ρ). We further define the optimal risk values for the class of policies Π = wρ ◦ H that we

consider herein.

1. J∗: the optimal expected unregularized risk, i.e.,

J∗ := min
f∈H

Ex

[
K∑
k=1

p∗k(x)ck(w(f(x)))

]
= min

f∈H
R(w ◦ f ; 0). (9)

2. J∗ρ : the optimal expected regularized risk for any given regularization parameter ρ> 0, i.e.,

J∗ρ := min
f∈H

Ex

[
K∑
k=1

p∗k(x)ck(wρ(f(x))) + ρφ(wρ(f(x)))

]
= min

f∈H
R(wρ ◦ f ;ρ).

3. Ĵnρ : the optimal empirical regularized risk with any given sample Sn and a given regularization

parameter ρ> 0, i.e.,

Ĵnρ := min
f∈H

1

n

n∑
i=1

c(wρ(f(xi)), ξi) + ρφ(wρ(f(xi))) = min
f∈H

R̂n(wρ ◦ f ;ρ),

and we let f̂nρ denote its optimal solution.

3.1. Asymptotic Consistency

We first demonstrate the asymptotic consistency of the ICEO approach. The consistency of our

approach is three-fold: the consistency of the ICEO risk, the consistency of the ICEO decisions, and

the consistency of the ICEO hypothesis. Our asymptotic consistency results require the following

conditions:

Assumption 1. For the compact hypothesis class H, we have the following:

A. (Model Specification) The hypothesis class H includes the true hypothesis f∗ i.e., f∗ ∈H.
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B. (Unique true hypothesis.) Suppose that the training data of features, {xi}ni=1, is an i.i.d.

sequence generated from the distribution Dx. There does not exists a hypothesis f 6= f∗ in H

such that W (f(x))∩W (f∗(x)) 6= ∅, Dx-almost surely for all x∈X .

To guarantee the consistency of the ICEO method, we consider a sequence of regularization param-

eters ρn, depending on the sample size n, such that ρn converges to zero as n grows to infinity.

Theorem 1 below demonstrates the three-levels of consistency.

Theorem 1 (Asymptotic Consistency of ICEO). Suppose that the training data (xi, ξi) is

an i.i.d. sequence from the distribution D and that the sequence of regularization parameters ρn

satisfies limn→∞ ρn = 0. Then, under Assumption 1.A, we have the following:

(i) The optimal empirical regularized risk converges to the optimal expected risk, i.e., Ĵnρn → J∗

with probability 1.

(ii) Dx-almost surely for all x ∈ X , the sequence of ICEO decisions wρn(f̂nρn(x)) converges to the

true set of optimal decisions W (f∗(x)), i.e., dist(wρn(f̂nρn(x)),W (f∗(x)))→ 0 with probability

1.

(iii) Additionally, with Assumption 1.B, the sequence of ICEO hypotheses converges to the true

hypothesis, i.e, f̂nρn→ f∗ with probability 1.

We would like to clarify the relationship between the asymptotic consistency stated in Theorem 1

and the asymptotic optimality defined in Bertsimas and Kallus (2020). In Bertsimas and Kallus

(2020), the authors provide the asymptotic optimality as the ICEO decisions reaching the best

performance possible. Because of the continuity of the cost function c, the convergence of ICEO

decisions, as stated in (ii) of Theorem 1, implies the asymptotic optimality stated in Bertsimas

and Kallus (2020).

Proof of Theorem 1 In this proof, we slightly abuse the notations and let R(f ;ρ) denote R(wρ ◦

f ;ρ) for any ρ ≥ 0 and R̂n(f ;ρ) denote R̂n(wρ ◦ f ;ρ). We first show that limρ→0 J
∗
ρ = J∗. Recall

that J∗ =R(f∗; 0) and J∗ρ =R(f∗ρ ; rho), and we have:

R(f∗; 0)≤R(f∗ρ ; 0) (10)

≤R(f∗ρ ;ρ) (11)

≤R(f∗;ρ), (12)

where (10) holds because the true hypothesis f∗ achieves the optimal value J∗. (11) follows from

the fact that φ is a non-negative function and (12) follows from the fact that f∗ρ is the optimizer

of R(·;ρ). In the meanwhile, R(f∗;ρ)→R(f∗; 0) as ρ→ 0. Thus,

J∗ρ :=R(f∗ρ ;ρ)→R(f∗; 0) = J∗.
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Then we want to show that Ĵnρ → J∗ρ with probability 1 as n→∞. Let li(f, ρ) := c(wρ(f(xi)), ξi)+

ρφ(wρ(f(xi))), then li(·, ρ) are i.i.d. random functions on the compact hypothesis class H. Due to

the compactness of S, both R(·;ρ) and li(·, ρ) are bounded. Then we can apply the main theorem in

Rubin (1956) and have that 1
n

∑n

i=1 li(·, ρ)→R(·;ρ) with probability 1 for all f uniformly. Moreover,

together with the continuity of R(·;ρ), the uniform convergence of R̂n leads to the Γ-convergence

of l̂(·, ρ) to R(·;ρ) in probability (Braides (2006)). Then we can apply the Fundamental Theorem of

Γ-convergence and leads to the convergence of minimum values Ĵnρ converges to J∗ρ (Braides et al.

(2002)). Then for any sequence of ρn > 0 andρn→ 0, as n→∞, we can find a sequence of εn > 0

that satisfies limn→∞ εn = 0 and the following conditions: J∗ρn − J
∗ ≤ εn and |Ĵnρn − J

∗
ρn
|< εn with

probability 1. Thus, |Ĵnρn − J
∗| ≤ 2εn for all n, which leads to Ĵnρn → J∗ with probability 1 and (i)

is proved.

Due to the compactness of S and H, with any sequence of ρi → 0, the sequence wρi(f
∗
ρi

(x))

has accumulation points. Let wρt(f
∗
ρt

(x)) be any subsequence converging to an accumulation point

wρ∞(f∗ρ∞(x))∈ S. Note that we have

J∗ = lim
t→∞

Ex[
K∑
k=1

f∗k (x)ck(wρt(f
∗
ρt

(x))) + ρtφ(wρt(f
∗
ρt

(x)))] (13)

≥ lim
t→∞

Ex[
K∑
k=1

f∗k (x)ck(wρt(f
∗
ρt

(x)))] (14)

≥Ex[
K∑
k=1

f∗k (x)ck(wρ∞(f∗ρ∞(x)))]. (15)

(13) follow from J∗ρ → J∗ when ρ → 0 and (14) holds due to the non-negativity of the regu-

larization term φ. Then by Fatou’s lemma, we have the last inequality (15). Since W (f∗(x)) is

defined the set of optimal solutions of
∑K

k=1 f
∗
k (x)ck(·) for all x, then Dx almost surely for all

x, wρ∞(f∗ρ∞(x)) must lie in the set w(f∗(x)). Then dist(wρt(f
∗
ρt

(x)),W (f∗(x))) ≤ ‖wρt(f∗ρt(x))−
wρ∞(f∗ρ∞(x))‖. By the continuity of the norm ‖ · ‖, limt→∞ ‖wρt(f∗ρt(x)) − wρ∞(f∗ρ∞(x))‖ =

‖ limt→∞wρt(f
∗
ρt

(x)) − wρ∞(f∗ρ∞(x))‖ = 0 ≥ dist(wρt(f
∗
ρt

(x)),W (f∗(x))). Therefore, Dx-almost

surely for all x, dist(wρ(f̂
n
ρ (x)),W (f∗(x)))→ 0 as ρ→ 0.

Moreover, for any fixed ρ > 0, due to the compactness of H and the fact that 1
n

∑n

i=1 li(·, ρ)

converges to R(·;ρ) uniformly with probability 1, we can apply the fundamental theorem of Γ-

convergence again and conclude that any accumulation point of f̂nρ , denoted by f∞ρ , minimizes

R(·;ρ) with probability 1. Because of the strongly convexity of ck(·)+ρφ(·), if f∞ρ minimizes R(·;ρ),

then w(f∞ρ (x)) =w(f∗ρ (x)) Dx-almost surely for all x∈X . Therefore, given any sequence ρn→ 0, we

can find a sequence of δn ≥ 0 such that limn→∞ δn = 0 and satisfies both ‖w(f∗ρn(x))−wρn(f̂nρn(x))‖ ≤
δn and dist(wρn(f∗ρn(x)),W (f∗(x)))≤ δn, with probability 1. Therefore, with probability 1, we have

dist(wρn(f̂nρn(x)),W (f∗(x)) = inf
u∈W (f∗(x))

‖wρn(f̂nρn(x))−wρn(f∗ρn(x)) +wρn(f∗ρn(x))−u‖
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≤ ‖wρn(f̂nρn(x))−wρn(f∗ρn(x))‖+ inf
u∈W (f∗(x))

‖wρn(f∗ρn(x))−u‖ (16)

≤ 2δn, Dx− almost surely, (17)

where (16) follows from the triangle inequality. (17) further leads to the conclusion in (ii).

If we have an accumulation points of f̂nρn , denoted as f̄ , that does not equal to f∗, then by (ii),

we have W (f̄(x))∩W (f∗(x)) 6= ∅ for all x∈X almost surely, which contradict to Assumption 1.B.

Thus with the uniqueness assumption, the true hypothesis f∗ can be recovered by f̂nρn . �

3.2. Finite Sample Performance Guarantees

We now provide finite sample performance guarantees of the ICEO solution f̂nρn in the form of

generalization bounds based on Rademacher complexities. In particular, our overall strategy is as

follows: (i) we demonstrate that, due to the presence of the strongly convex decision regularization

function φ(·), the optimal solution mapping wρ(·) is Lipschitz, (ii) we use the result of Maurer (2016)

to bound the Rademacher complexity with respect to the cost function of the ICEO framework

by the multivariate Rademacher complexity of the underlying hypothesis class H. In addition,

we slightly abuse the notation and let c(·) : S→RK denote a vector-valued mapping, where each

component ck(w) denotes the cost c(w,ξ = z̃k) for all scenarios k = 1, . . . ,K, as defined earlier in

Section 2.

Before we investigate the Rademacher complexities, we first demonstrate the Lipschitz property

of the regularized optimal solution mapping wρ(·) for any positive parameter ρ, based on the

following assumption regarding the Lipschitz property of the cost function c(w) and the strong

convexity constant of the decision regularization function φ(·).

Assumption 2. The cost function c(·) and the decision regularization function φ(·) satisfy the

following conditions:

A. c(·) is Lc-Lipschitz with respect to the decision w ∈ S, i.e., it holds that ‖c(w1)− c(w2)‖2 ≤

Lc‖w1−w2‖ for all w1,w2 ∈ S.

B. The decision regularization function φ(·) is a 1-strongly convex function on the compact set

S.

Note that we use the `2 norm as the norm on the space of outputs of the cost functions c(·), while

the norm on the space of decisions w remains the generic norm ‖ · ‖. The reason for focusing on

the `2 norm is that we can apply the elegant vector contraction inequality of Maurer (2016) when

analyzing the Rademacher complexity. It is also worth mentioning that the Lipschitz condition

in Assumption 2.A implies that the cost functions ck(·) are uniformly Lc-Lipschitz, i.e., ‖c(w1)−

c(w2)‖∞ ≤Lc‖w1−w2‖.
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Proposition 1 (Lipschitz Properties of wρ(·) and c(·)). Suppose Assumption 2 holds.

Then, for any ρ> 0, the optimal solution mapping wρ(·) is (Lc
ρ

)-Lipschitz:

‖wρ(p)−wρ(p′)‖ ≤
Lc
ρ
‖p− p′‖2, ∀p, p′ ∈∆K . (18)

Furthermore, c(wρ(·)) is (L
2
c
ρ

)-Lipschitz:

‖c(wρ(p))− c(wρ(p′))‖∞ ≤ ‖c(wρ(p))− c(wρ(p′))‖2 ≤
L2
c

ρ
‖p− p′‖2, ∀p, p′ ∈∆K . (19)

The proof of this Proposition follows standard arguments of Nesterov’s smoothing technique (Nes-

terov (2003)), and a related result with a similar proof style appears in Gupta and Kallus (2021).

Proof of Proposition 1 Let p, p′ ∈∆K be fixed. We let hρ(·, p) : S→R be defined by hρ(w,p) :=∑K

k=1 pkck(w) +ρφ(w). Since φ(·) is a 1-strongly convex function, then hρ(·, p) is ρ-strongly convex

and it holds for all w ∈ S and g ∈ ∂whρ(w,p) that

hρ(w
′, p)−hρ(w,p) ≥ gT (w′−w) +

ρ

2
‖w′−w‖2 ∀w′ ∈ S. (20)

Since wρ(p) = arg minw∈S hρ(w,p), the first-order optimality condition implies there exists a sub-

gradient g ∈ ∂h(wρ(p), p) such that gT (w′ −wρ(p)) ≥ 0 for all w′ ∈ S. Applying this condition in

(20) with w←wρ(p) w
′←wρ(p

′) yields

hρ(wρ(p
′), p)−hρ(wρ(p), p) ≥

ρ

2
‖wρ(p′)−wρ(p)‖2.

Switching the role of p and p′ yields

hρ(wρ(p), p
′)−hρ(wρ(p′), p′) ≥

ρ

2
‖wρ(p)−wρ(p′)‖2.

Adding the above two inequalities together yields

ρ‖wρ(p)−wρ(p′)‖2 ≤ hρ(wρ(p), p
′)−hρ(wρ(p′), p′) +hρ(wρ(p

′), p)−hρ(wρ(p), p)

= [hρ(wρ(p), p
′)−hρ(wρ(p), p)]− [hρ(wρ(p

′), p′)−hρ(wρ(p′), p)]

=
K∑
k=1

(p′k− pk)ck(wρ(p))−
K∑
k=1

(p′k− pk)ck(wρ(p′))

=
K∑
k=1

(p′k− pk)(ck(wρ(p))− ck(wρ(p′)))

≤ ‖p− p′‖2‖c(wρ(p))− c(wρ(p′))‖2

≤ Lc‖p− p′‖2‖wρ(p)−wρ(p′)‖,

where the last inequality uses Assumption (2.A). Dividing by ‖wρ(p)−wρ(p′)‖ leads to (18), and

combining the resulting inequality again with (2.A) yields (19). �
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To establish the generalization bound for the ICEO risk, we rely on both regular single-variate

and multi-variate Rademacher complexity. In the ICEO setting, given a class of policies Π, where

π : X → S for all π ∈ Π, we can apply generalization bounds that directly use the Rademacher

complexity of the function class c ◦ Π. Given a sample {(xi, ξi)}ni=1 the empirical Rademacher

complexity R̂n(c ◦Π) of the function class c ◦Π is defined by

R̂n(c ◦Π) := Eσ

[
2

n
sup
g∈c◦Π

n∑
i=1

σig(xi, ξi)

]
=Eσ

[
2

n
sup
π∈Π

n∑
i=1

σic(π(xi), ξi)

]
,

where σi are independent random variables drawn from the Rademacher distribution, i.e. Pr(σi =

+1) = Pr(σi =−1) = 1
2

for all i= 1,2, . . . , n. The expected Rademacher complexity Rn(c◦Π) is then

defined as the expectation of R̂n(c ◦Π) with respect to the i.i.d. sample {(xi, ξi)}ni=1 drawn from

the distribution D:

Rn(c ◦Π) =E(xi,ξi)∼D[R̂n(c ◦Π)].

Next, we introduce the multivariate Rademacher complexity as a generalization of the regular

Rademacher complexity to a class of vector-valued functions. In the ICEO context, we focus on

the hypothesis class H which takes values in ∆K . Following Bertsimas and Kallus (2020), Maurer

(2016) and Balghiti et al. (2019), the empirical multivariate Rademacher complexity R̂n(H) is

defined in our context as

R̂n(H) =Eσ

[
2

n
sup
f∈H

n∑
i=1

K∑
k=1

σikfk(xi)

]
,

where σik are also independent random variables drawn from the Rademacher distribution for all

i= 1,2, . . . , n and k= 1, . . . ,K. Correspondingly, the expected multivariate Rademacher complexity

Rn(H) is then defined as

Rn(H) =Exi∼Dx [R̂n(H)],

In the remainder of this section, we provide generalization bounds with respect to the expected

single-variate and multi-variate Rademacher complexities. We note that similar results can be

achieved with respect to the empirical versions of the Rademacher complexities. Our focus on the

expected versions is justified since, for many hypothesis classes H, we can bound Rn(H) by a term

that converges to 0 as the sample size n grows. For example, Balghiti et al. (2019) establish upper

bounds of Rn(H) for regularized linear hypothesis classes with the rate of O( 1√
n

), where the O(·)
notation hides dimension dependent constants that depend on the type of regularization used.

Given a sample {(xi, ξi)}ni=1, we aim to provide a high-probability bound on the out-of-sample

risk R(wρn ◦f), given the in-sample risks R̂n(wρn ◦f) and R̂n(wρn ◦f ;ρn), that holds uniformly for

any hypothesis f ∈ H. As such, our generalization bound is constructed based on the the classic

generalization bound with Rademacher complexity due to Bartlett and Mendelson (2002), which

we restate below as specialized to the ICEO setting. Recall that c̄ := supw∈S,ξ∈Ξ c(w,ξ).
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Theorem 2 (Bartlett and Mendelson (2002)). Let Π be a family of functions mapping

from X to S with bounded Rademacher complexity Rn(c◦Π). Then, for any δ ∈ (0,1], with probabil-

ity at least 1−δ over i.i.d. data {(xi, ξi)}ni=1 drawn from the distribution D, the following inequality

holds for all π ∈Π:

R(π) ≤ R̂n(π) +Rn(c ◦Π) + c̄

√
log( 1

δ
)

2n
. (21)

The next step of our analysis is to apply the vector contraction inequality of Maurer (2016) to

derive a generalization bound that depends directly on the multi-variate Rademacher complexity

of the hypothesis class H.

Theorem 3 (Generalization of ICEO). Suppose Assumption 2 holds and that the hypothesis

class H has bounded multi-variate Rademacher complexity Rn(H). Then, for any δ ∈ (0,1] and

ρn > 0, with probability at least 1− δ over i.i.d. data {(xi, ξi)}ni=1 drawn from the distribution D,

the following inequalities hold for all f ∈H:

R(wρn ◦ f) ≤ R̂n(wρn ◦ f) +

√
2L2

c

ρn
Rn(H) + c̄

√
log( 1

δ
)

2n

≤ R̂n(wρn ◦ f ;ρn) +

√
2L2

c

ρn
Rn(H) + c̄

√
log( 1

δ
)

2n
.

Note that the right hand side of the first inequality in Theorem 3 involves the unregularized

empirical risk, which may be evaluated for any f ∈H. The right hand side of the second inequality

in Theorem 3 invovles the regularized empirical risk, which is precisely the objective function of

(ICEO-ρ). As mentioned previously, one can often establish upper bounds on Rn(H) that converge

to zero, for example at the rate O( 1√
n

). Therefore, Theorem 3 suggests that we should set the

sequence of regularization parameters ρn so that Rn(H)/ρn converges to zero as well, in which case

the remainder terms on the right-hand side of (??) converge to zero. We conclude this section with

the proof of Theorem 3.

Proof of Theorem 3 Due to Proposition 1, in particular the Lipschitz property of c(·) in (19), we

can apply the vector contraction inequality from Maurer (2016) which, stated in terms of empirical

Rademacher complexities, yields

R̂n(c ◦wρn ◦H) ≤
√

2L2
c

ρn
R̂n(H).

Taking expectations of both sides of the above inequality, with respect to i.i.d. data {(xi, ξi)}ni=1

drawn from the distribution D, yields

Rn(c ◦wρn ◦H)≤
√

2L2
c

ρn
Rn(H).
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Then, a direct application of Theorem 2 yields the first inequality. Finally, for any ρn > 0, note

that R(wρn ◦ f)≤R(wρn ◦ f ;ρn) due to the non-negativity of the decision regularization function

φ(·), which yields the second inequality. �

4. Computational Methods

In this section, we discuss the computational difficulties of solving the ICEO formulation (ICEO-ρ)

and present multiple approaches to address them.

Non-convexity. First, we point out that the ICEO formulation, (ICEO-ρ), is not a convex opti-

mization problem even in a very simple case where both the objective and constraints of the

nominal optimization problem are linear and the decision regularization is quadratic, as stated in

Example 4.

Example 4 (Linear nominal optimization problem). Consider an example with a linear

objective function in the optimization stage, i.e., cj(w) is a linear function cTj w for some cj ∈ Rd

for all j = 1, . . . ,K. Suppose we use the decision regularization function φ(w) := 1
2
‖w‖22. For any

p∈∆K , let c̄(p) :=
∑K

j=1 pjcj. Then, note that

wρ(p) = arg min
w∈S

{
c̄(p)Tw+ ρ

2
‖w‖22

}
= arg min

w∈S

{
ρ
2
‖(c̄(p)/ρ)−w‖22

}
= ΠS(c̄(p)/ρ),

where ΠS(·) is the Euclidean projection operator onto S. Then, (ICEO-ρ) is the problem of minimiz-

ing a sum of linear functions composed with projection operators, which is generally non-convex.

At best, when S is a polyhedron, i.e., S := {w ∈Rd :Aw≤ b} and when we adopt a linear hypoth-

esis class H = {x 7→ Bx ∈ ∆K : B ∈ RK×p}, we can formulate (ICEO-ρ) as a bilinear quadratic

optimization problem. Indeed, (ICEO-ρ) can be reformulated as

min
B,wi,λi

1

n

n∑
i=1

K∑
j=1

(1{ξi = z̃j}(Bxi)jcTj wi + (ρ/2)wTi wi) (ICEO-ρ-LP)

s.t.
ρ

2
wTi wi +

K∑
j=1

(Bxi)jc
T
j wi +

1

2
(
K∑
j=1

(Bxi)jcj +ATλ)T (
K∑
j=1

(Bxi)jcj +ATλ))

+λTi b≤ 0, ∀i= 1, . . . , n

Awi ≤ b, ∀i= 1, . . . , n

λi ≥ 0, ∀i= 1, . . . , n

Note that the dual function of the nominal quadratic optimization is

−1

2
(
K∑
j=1

(BTxi)jcj +ATλ)T (
K∑
j=1

(BTxi)jcj +ATλ))−λT b
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thus the dual problem becomes

min
λ≥0

1

2
(
K∑
j=1

(BTxi)jcj +ATλ)T (
K∑
j=1

(BTxi)jcj +ATλ)) +λT b. (22)

The first two group of constraints in (ICEO-ρ-LP) is to guarantee that wi and λi are the optimal

primal and dual solutions. The second and third group of constraints are for the primal and dual

feasibility. �

As demonstrated above, even in this simplest case, (ICEO-ρ-LP) is not a convex optimization

problem. Besides non-convexity, a more serious issue from a practical standpoint is the potential

of non-differentiability of the optimal solution mapping.

Non-differentiability. To solve the non-convex ICEO problem (ICEO-ρ), a default approach in

machine learning is to use a gradient-based algorithm such as the basic stochastic gradient descent

method. Indeed, in practice gradient-based algorithms are often able to deliver high quality solu-

tions for machine learning problems, especially in high dimensions. Unfortunately, applying these

basic gradient-based methods to solve the ICEO formulation poses an additional major difficulty

due to the non-differentiability of the optimal solution mapping wρ(·). Although wρ(·) is a contin-

uous function, as guaranteed for example by Proposition 1, it is generally not differentiable. The

non-differentiability leads to major difficulties in applying gradient-based method while solving

ICEO-ρ. As reviewed in Section 1.1, existing studies that focused on directly learning the opti-

mal solution mapping w(f∗(x)) also encounter the same issue of non-differentiability. Wilder et al.

(2019b) does not discuss much about this. Donti et al. (2017) use the output of an automatic gradi-

ent function calculated by back propagation of a neural network. Agrawal et al. (2019) approximate

the gradient by solving a group of linear equations based on KKT conditions. However, all existing

methods fail to demonstrate theoretical reliability or performance guarantees in approximating the

gradient.

The non-differentiability of the optimal solution mapping mainly arises from the constraints and

the points of discontinuity occur where there is a “jump” in the optimal solution, e.g., in the poly-

hedral case as in Example 4. Therefore, a non-differentiability optimal solution map may also have

regions where it is constant (or close to constant), resulting in the gradient of the ICEO objective

being equal to zero. We demonstrate this poor behavior in Figure 1a, where we plot the second

coordinate of the optimal solution mapping wρ(·) with respect to the first two coordinates of the

input probability vector, for the multi-product newsvendor problem in Example 1, demonstrating

the piece-wise constant shape. Such piece-wise constant shapes will greatly impede the performance

of gradient-based methods, even if the gradient is easily calculated. This is because the gradient

of the optimal solution mapping is zero in flat regions creating poor local minima that are very

difficult to escape.
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(a) 3-D plot of the optimal oracle. It is clear that the

landscape of the optimal solution mapping has cliffs

and platforms.

(b) 3-D plot of the approximated oracle constructed

using polynomial functions. The piece-wise constant

shape is smoothed out.

Figure 1 The landscape of the optimal and the approximated oracle.

To address the issue of non-differentiability and its consequences leading to poor local optima,

we develop a framework for approximating the mapping wρ(·) with a differentiable function w̃ρ(·),
which allows us to smooth out the optimal solution mapping and eliminate those poor local min-

ima. Figure 1b is an example of smoothing out the piece-wise constant shape by constructing

an approximate oracle using polynomial kernel regression. As noted before, gradient-based meth-

ods are often highly effective at delivering high quality solutions to non-convex machine learning

problems in practice. Thus, in a practical sense, the non-differentiability of the optimal solution

mapping is a much more serious concern than the non-convexity. Our general strategy of approx-

imating the optimal solution mapping with a differentiable function, for which we expand upon

and give examples in Section 4.1, greatly increases the practical viability of the ICEO approach.

4.1. Approximate Optimal Solution Mappings

As stated in the previous section, the major computational difficulty in solving the ICEO training

problem (ICEO-ρ) in practice is the non-differentiability of the mapping wρ(·). To overcome this

difficulty, for any given ρ, we approximate the function wρ(·) with a differentiable function w̃ρ(·) :

∆K→ S. Then instead of (ICEO-ρ), we solve the following problem:

min
f∈H

1

n

n∑
i=1

c(wi, ξi) + ρφ(wi) (Approx-ICEO-ρ)

s.t. wi = w̃ρ(f(xi))

To construct such an approximation w̃ρ(·), we rely on the ability to evaluate the optimal solution

mapping wρ(p) for any given p ∈ ∆K , as stated in Section 2. We can then generate a sequence
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of samples (pi,wρ(pi)) and build an approximation function w̃ρ(·) using any class of continuous

functions with enough representation power, such as polynomial functions or neural networks.

We consider two generic types of approximation schemes for building the mapping w̃ρ(·): (i)

uniform approximations, and (ii) high-probability approximations. Uniform approximation schemes

satisfy a uniform error bound, as formalized below in Assumption 3, and can be achieved by an

interpolation method such as the Bernstein polynomial method as described in Section 4.2.1. Note

that, for each j = 1, . . . ,K and p ∈∆K , we use the notation wρ,j(p) and w̃ρ,j(p) to refer to the jth

coordinates of wρ(p) and w̃ρ(p), respectively.

Assumption 3 (Uniform Error Bound). For each j = 1, . . . ,K, there exists a constant

Eunif
j ≥ 0 such that the approximate optimal solution mapping w̃ρ(·) : ∆K→ S satisfies:

|wρ,j(p)− w̃ρ,j(p)| ≤ Eunif
j , ∀p∈∆K .

The uniform error bound in Assumption 3 provides guarantees for the approximation error over all

probability vectors from the simplex ∆K . There are two main drawbacks that apply to all known

approaches for achieving a uniform error bound. First, achieving a tight uniform error bound

requires exact or near-exact computations of the optimal solution mapping wρ(p) for all p∈∆K . In

practice, we may only have an approximate optimal solution mapping available. Second, the sample

size required by a method that achieves Assumption 3, for example an interpolations scheme, may

be prohibitively large. For these reasons we are motivated to consider a high-probability error

bound, which would hold for the more realistic approach of using a regression method, possibly

with noise in the output of wρ(·), to fit the approximate optimal solution mapping. We consider

a generic approach that uses a hypothesis class G for the approximate optimal solution mappings.

Assumption 4 below formalizes our high-probability error bound, which holds for a wide range of

regression methods including, for example, the polynomial kernel regression method considered in

Section 4.2.2. In Assumption 4, we work with a reference distribution Dp on ∆K that we use to

generate samples {pi}mi=1 to feed into a regression method. In addition, for any f ∈H, we later use

the notation Df(x) to refer to the distribution on ∆K induced by the marginal distribution Dx of

x∈X .

Assumption 4 (High-probability Error Bound). Let G be a family of candidate approxi-

mate optimal solution mappings whereby w̃ρ(·) : ∆K → S for all w̃ρ(·) ∈ G. For each j = 1, . . . ,K,

there exists a function Eprob
j (·, ·;G) : N× [0,1)→ [0,∞) such that, for any distribution Dp on ∆K

and for any δ ∈ (0,1], with probability at least 1− δ over m independent samples drawn from Dp
with empirical distribution D̂mp , it holds for all w̃ρ(·)∈ G that:∣∣∣EDp [|wρ,j(p)− w̃ρ,j(p)|]−ED̂mp [|wρ,j(p)− w̃ρ,j(p)|]

∣∣∣ ≤ Eprob
j (m,δ;G).
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When using an approximate optimal solution mapping with either a uniform or a high-probability

error bound guarantee, a natural question is: do the performance guarantees of the ICEO approach

developed in Section 3 extend to problem (Approx-ICEO-ρ)? We now answer this question affir-

matively by extending the generalization bounds of Theorem 3 to situations with approximate

mappings satisfying either Assumption 3 or Assumption 4. We make an implicit assumption that,

after solving problem (Approx-ICEO-ρ), the decision-maker uses the correct optimal solution map-

ping wρ(·) to make decisions. Therefore, the left hand side of our bounds involve the true risk

R(wρ ◦f) with the correct mapping while the right hand sides involve the empirical risk R̂n(w̃ρ ◦f)

with the approximation (and the reguarlized version thereof).

Theorem 4. Suppose Assumption 2 holds and that the hypothesis class H has bounded multi-

variate Rademacher complexity Rn(H). Then, for any δ ∈ (0,1] and ρn > 0, we have the following:

(i) If the approximate optimal solution mapping w̃ρ(·) satisfies the uniform error bound as stated

in Assumption 3, then with probability at least 1− δ over i.i.d. data {(xi, ξi)}ni=1 drawn from

the distribution D, the following inequalities hold for all f ∈H:

R(wρn ◦ f)≤ R̂n(w̃ρn ◦ f) +

√
2L2

c

ρn
Rn(H) + c̄

√
log( 1

δ
)

2n
+Lc

d∑
j=1

Eunif
j (23)

≤ R̂n(w̃ρn ◦ f ;ρn) +

√
2L2

c

ρn
Rn(H) + c̄

√
log( 1

δ
)

2n
+Lc

d∑
j=1

Eunif
j (24)

(ii) If the approximate optimal solution mapping w̃ρ(·) comes from a family G satisfying the high

probability error bound as stated in Assumption 4, then with probability at least 1− δ over

i.i.d. data {(xi, ξi)}ni=1 drawn from the distribution D and over m independent samples {pi}mi=1

drawn from a reference distribution Dp on ∆K, the following inequalities hold for all f ∈H:

R(wρn ◦ f)≤ R̂n(w̃ρn ◦ f) +Lc

d∑
j=1

[
1

m

m∑
i=1

|wρ,j(pi)− w̃ρ,j(pi)|+ Eprob
j (n, δ/2d;G) + Eprob

j (m,δ/2d;G)

]

+

√
2L2

c

ρ
Rn(H) + diam(S)LcTV(Df(x),Dp) + c̄

√
log( 1

δ
)

2n
(25)

≤ R̂n(w̃ρn ◦ f ;ρn) +Lc

d∑
j=1

[
1

m

m∑
i=1

|wρ,j(pi)− w̃ρ,j(pi)|+ Eprob
j (n, δ/2d;G) + Eprob

j (m,δ/2d;G)

]

+

√
2L2

c

ρ
Rn(H) + diam(S)LcTV(Df(x),Dp) + c̄

√
log( 1

δ
)

2n
(26)

Proof of Theorem 4 By Theorem 3 (i), for any ρ, we have

R(wρ ◦ f ;ρ)≤ R̂n(wρ ◦ f ;ρ) +

√
2L2

c

ρ
Rn(H) + c̄

√
log( 1

δ
)

2n
.
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Noted that

1

n

n∑
i=1

|c(wρ(f(xi)), ξi)− c(w̃ρ(f(xi)), ξi)| ≤Lc
1

n

n∑
i=1

‖wρ(f(xi)))− w̃ρ(f(xi))‖1 (27)

=Lc

d∑
j=1

1

n

n∑
i=1

|wρ,j(f(xi))− w̃ρ,j(f(xi))| (28)

When the approximated oracle has a uniform error, we combine (27) and Assumption 3 to have

1

n

n∑
i=1

|c(wρ(f(xi)), ξi)− c(w̃ρ(f(xi)), ξi)| ≤Lc
d∑
j=1

Eunif
j . (29)

When the oracle is noised, we consider two different distributions Df(x) and Dp. We let Df(x) denote

the distribution of f(x) given a hypothesis f and the distribution of x, Dx. Moreover, we let Dp
denote the distribution used to generate training samples {(pi,wi)}mi=1 for oracle approximation.

Then, we apply the error bound (4) with distribution Df(x) and Dp respectively and have

1

n

n∑
i=1

|wρ,j(f(xi))− w̃ρ,j(f(xi))| ≤EDf(x) [|wρ,j(p))− w̃ρ,j(p)|] + Eprob
j (n, δ/2d;G),

w.p. 1− δ/2d,

and

EDp [|wρ,j(p))− w̃ρ,j(p)|]≤
1

m

m∑
i=1

|wρ,j(pi))− w̃ρ,j(pi)|+ Eprob
j (m,δ/2d;G),

w.p. 1− δ/2d.

Considering the total variation between Df(x) and Dp, we have the following

EDf(x) [|wρ,j(p))− w̃ρ,j(p)|]≤EDp [|wρ,j(p))− w̃ρ,j(p)|] + diamj(S)TV(Df(x),Dp),

where diamj(S) is the diameter of S in the j-th coordinate and TV denotes the total variation.

This result holds because |wρ,j(·)− w̃ρ,j(·)| is continuous and bounded by diamj(S). Thus,

1

n

n∑
i=1

‖wρ(f(xi)))− w̃ρ(f(xi))‖1 ≤
d∑
j=1

[
1

m

m∑
i=1

|wρ,j(pi)− w̃ρ,j(pi)|+ Eprob
j (n, δ/2d;G) + Eprob

j (m/2d, δ;G)

]
+ diamj(S)TV(Df(x),Dp) w.p. 1− δ,

so we have

(27)≤Lc
d∑
j=1

[
1

m

m∑
i=1

|wi,j − w̃ρ,j(pi)|+ Eprob
j (n, δ/2d;G) + Eprob

j (m,δ/2d;G)

]
+ diam(S)LcTV(Df(x),Dp)

with probability at least 1− δ. Here we slightly abuse the notation and let diam(S) denote the

summation of coordinate-wise diameter along all coordinates.

Then (23) and (25) follow from combining (29) and (??) with Theorem 3. (24) and (26) follow

from the non-negativity of the regularization term. �



26 Grigas, Qi, Shen: Integrated Conditional Estimation-Optimization

4.2. Approximate the optimal solution oracle by polynomials

In this section, we provide two examples of using polynomial functions to approximate the optimal

solution mapping: (i) interpolation using Bernstein polynominals, which satisfies a uniform error

bound, and (ii) polynomial kernel regression, which satisfies a high-probability error bound.

4.2.1. Bernstein polynomials. One example for approximating the optimal solution map-

ping is interpolation using Bernstein polynomials, for which we review the definition below.

Definition 1 (Bernstein approximation (De Klerk et al. (2008))). For a given function

ω : ∆K→R, the Bernstein approximation with order s, Bs(ω) : ∆K→R, is defined by:

Bs(ω)(p) :=
∑

α∈I(K,s)

w̄
(α
s

) s!
α!
pα, ∀p∈∆K , (30)

where I(K,s) := {α∈NK0 |
∑K

i=1αi = s}, α! := Πiαi!, and pα := pα1
1 · · ·p

αK
K . �

Using Bernstein polynomials, based on a result of De Klerk et al. (2008), we can achieve a uniform

bound of the approximation error as described in Assumption 3.

Proposition 2. For a given ρ > 0, suppose that we use the Bernstein approximation method

(Definition 1) applied separately to each coordinate function wρ,j(·) to construct an approximate

optimal solution mapping w̃ρ(·). Then, w̃ρ(·) satisfies the uniform error bound in Assumption 3

with

Eunif
j =

ΩLc
ρ
√
s
,

where Ω> 0 is an absolute constant.

Proof of Proposition 2 This result directly follows from Theorem 3.2 in De Klerk et al. (2008)

together with the Lipschitz property from Proposition 1. �

Given the result in Proposition 2, we can immediately obtain a generalization bound for the

Bernstein approximation method by applying item (i) of Theorem 4. While the Bernstein polyno-

mial method provides a strong uniform error bound guarantee, there is a significant drawback in

the number of samples required to obtain this bound. Indeed, to accomplish this approximation,

it involves knowing function values of wρ,j(·) on the grid ∆K,s := {w ∈∆K : sw ∈ NK0 } which has(
K+s
K

)
many points in total. As such, the number of calculations of wρ(·) may be prohibitively large,

which motivates the use of regression methods.

4.2.2. Polynomial kernel regression. In this section, we consider using the less compu-

tationally prohibitive regression methods that lead to high-probability bounds as in Assumption

4. As an exemplary case, we consider the polynomial kernel regression method. In this setting,

we allow for the possibility of a “noised oracle” whereby the optimal solution mapping is not
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computed exactly. Specifically, the noised oracle outputs wρ(p) + σε instead of wρ(p), where ε

is a d-dimensional standard Gaussian random vector and σ is a scalar that represents the stan-

dard deviation of the noise. The approximate oracle w̃ρ(·) is constructed on independent samples

{(pi,wi)}mi=1 where pi is drawn from the reference distribution Dp and wi is computed from the

noised oracle. That is, we assume that wi = wρ(pi) + σεi for {εi}mi=1 that are i.i.d. realizations of

Gaussian random variables. These samples can be achieved by first generating {pi}mi=1 randomly

from following any user-chosen distribution Dp over the simplex ∆K and then calculating {wi}mi=1

from a (possibly randomized) algorithm for approximating wρ(·). Note that we do assume that

the noise is Gaussian, which may be a reasonable assumption for some algorithmic schemes for

approximating wρ(·).
The approximate optimal solution mapping is learned using polynomial kernels k(p, p′) = (c+

pTp′)s, where s∈N is the degree parameter. In the remaining part of this section, we let G denote a

function class induced by a polynomial kernel of degree s and let ‖ · ‖G denote any norm defined on

G. Note that G is a convex, star-shaped function class Wainwright (2019). For the function class G
and a given sample {pi}mi=1, let τj(G,{pi}mi=1, r) := infu∈G:‖u‖G≤r(

1
m

∑m

i=1(u(pi)−wρ,j(pi))2)1/2 denote

the fitting ability for wρ,j using the kernel function class G within a user-defined radius r. Given the

function class G and a given sample {(pi,wi)}mi=1, the method of kernel ridge regression estimates

the approximate optimal solution mapping w̃ρ(·) by solving:

min
u∈G:‖u‖G≤r

1

m

m∑
i=1

(u(pi)−wi,j)2 (31)

The corresponding high-probability approximation error bound for learning the noised oracle

using polynomial kernel ridge regression.

Proposition 3. Let G denote a function class induced by a polynomial kernel of degree s, sup-

pose that the noise of the output has standard deviation σ, and that we construct the approximate

solution mapping w̃ρ(·) using kernel ridge regression (31) with a user-defined radius r > 0. Then,

there exist absolute constants c̄, c̄′ such that for all δm ≥ c̄0
σ
r

(s−1+K)!

(s−1)!K!
1
m

, we have

1

m

m∑
i=1

(w̃ρ,j(pi)−wρ,j(pi))2 ≤ c̄1(c̄′1τj(G,{pi}mi=1, r) + r2δ2
m),

with probability at least 1− c̄2 exp(−c̄′2mr
2

σ2
δ2
m) for each coordinate j = 1, . . . ,K. Moreover, for any

θm that satisfies θm ≥ c̄3

√
1
m

(s−1+K)!

(s−1)!K!
, if it also holds that mθ2

m ≥ c̄0 log(4 log( 1
θm

)), then∣∣∣∣∣∣Ep[(w̃ρ,j(p)−wρ,j(p))2]1/2−

(
1

m

m∑
i=1

(w̃ρ,j(pi)−wρ,j(pi))2

)1/2
∣∣∣∣∣∣ ≤ c̄3r

2θm

with probability at least 1− c̄4 exp(−c̄′4
mθ2m
r2

) for each coordinate j = 1, . . . ,K.
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The main main body of this proof is a generalization of the result in Example 13.19 of Wainwright

(2019).

Proof of Proposition 3 Considering the kernel function K(p, p′) = (c+ pTp′)s with p ∈ RK , we

first generalize the result of Example 13.19 from Wainwright (2019). When the input p and p′ are K-

dimensional vectors, the empirical kernel matrix can have rank at most (s−1+K)!

(s−1)!K!
. Therefore, the left-

hand side of Inequality (13.56) from Wainwright (2019) can be upper-bounded by δm

√
1
m

(s−1+K)!

(s−1)!K!
.

Then we can apply Theorem 13.17 from Wainwright (2019) and set λm = 2δ2
m to achieve inequality

(3). Moreover, the empirical Rademacher complexity can be upper-bounded by c̄
√

1
m

(s−1+K)!

(s−1)!K!
with

some constant c̄. Then if we have θm ≥ c̄3b
√

1
m

(s−1+K)!

(s−1)!K!
, we can apply Theorem 14.1 from Wainwright

(2019) and therefore have the desired result inequality (3). �

Finally, we have the corresponding generalization bound in the following corollary.

Corollary 1. Suppose Assumption 2 holds and that the hypothesis class H has bounded multi-

variate Rademacher complexity Rn(H). Suppose further that we employ kernel ridge regression (31)

using a function class G induced by a polynomial kernel of degree s under the same conditions as

in Proposition 3. Then, for any δ ∈ (0,1] and ρn > 0, the following inequalities hold for all f ∈H:

R(wρn ◦ f) ≤ R̂n(w̃ρn ◦ f) +Lc

d∑
j=1

[c̄3r
2(θm + θn) + τj(G,{pi}mi=1, r) + c̄′1rδm]

+

√
2L2

c

ρn
Rn(H) +Lcw̄j

√
2TV(Df(x),Dp) + c̄

√
log( 1

δ
)

2n
(32)

≤ R̂n(w̃ρn ◦ f ;ρn) +Lc

d∑
j=1

[c̄3r
2(θm + θn) + τj(G,{pi}mi=1, r) + c̄′1rδm]

+

√
2L2

c

ρn
Rn(H) +Lcw̄j

√
2TV(Df(x),Dp) + c̄

√
log( 1

δ
)

2n
(33)

with probability at least 1 − δ′ over i.i.d. data {(xi, ξi)}ni=1 drawn from the distribution D and

over m independent samples {(pi,wi)}mi=1, where δ′ = δ + c̄2 exp(−c̄′2mr
2

σ2
δ2
m) + c̄4(exp(−c̄′4

mθ2m
r2

) +

exp(−c̄′4
nθ2n
r2

)) and δm, θm, and θn are chosen to satisfy the conditions in Proposition 3.

Proof of Corollary 1 The proof follow from a slight modification of the proof of Theorem 4. We

first consider

1

n

n∑
i=1

‖wρ(f(xi)))− w̃ρ(f(xi))‖1 ≤Lc
d∑
j=1

(
1

n

n∑
i=1

|wρ,j(f(xi))− w̃ρ,j(f(xi))|2)
1
2 .

Then noted that

EDf(x) [|wρ,j(p))− w̃ρ,j(p)|
2]≤EDp [|wρ,j(p))− w̃ρ,j(p)|2] + 2w̄2

jTV(Df(x),Dp),
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because |wρ,j(p))− w̃ρ,j(p)|2 is bounded by w̄2
j for all p∈∆K . Thus,

EDf(x) [|wρ,j(p))− w̃ρ,j(p)|
2]1/2 ≤EDp [|wρ,j(p))− w̃ρ,j(p)|2]1/2 + w̄j

√
2TV(Df(x),Dp).

Following the same reasoning of the proof in Theorem 4, the desired result follows. �

4.3. Computational Methods for the Semi-algebraic Case

In this section, we present an approach based on polynomial optimization in the case where the

objective of the downstream optimization problem is semi-algebraic and we use a linear hypothesis

class. In this case, when we additionally use a polynomial approximation w̃ρ(·), we can reformulate

the approximate ICEO formulation (Approx-ICEO-ρ) as a polynomial optimization problem, which

can be solved with a hierarchy of semi-definite optimizaiton problems. Specifically we assume that

both c and φ are semi-algebraic functions and we consider the linear hypothesis class H= {f(x) :

f(x) = Bx+ b, (B,b) ∈ B} where B(X ) = {(B,b) ∈ RK×p ×RK : f(x) ∈∆K ∀x ∈ X} ensures that

the output of the hypothesis returns a feasible probability vector. In this section, we demonstrate

an exact solution method for the semi-algebraic case by transforming the (Approx-ICEO-ρ) to a

polynomial optimization program. Before we reach the reformulated problem, we first review the

definitions of semi-algebraic sets and semi-algebraic functions.

Definition 2 (Semi-algebraic set Lasserre (2015)). K ⊂ Rn is a basic semi-algebraic set

if

K = {x∈Rn : gj(x)≥ 0, j = 1, . . . ,m} (34)

for some polynomial functions (gj)
m
j=1, i.e., (gj)

m
j=1 ⊂R[x]. �

Definition 3 (Basic semi-algebraic function Lasserre (2015)). Suppose a function f :

K→Rp, where K ⊆Rn is basic semi-algebraic, is in the algebra of functions generated by finitely

many of dyadic operations {+,×,÷,∨,∧} and monadic operations | · | and (·)1/q, q ∈ N, on poly-

nomials. We say f is basic semi-algebraic (b.s.a.), if there exists s ∈ N, polynomials (hk)
s
k=1 ⊂

R[x, y1, . . . , yp] and a basic semi-algebraic set Kf = {(x, y) ∈ Rn+p : x ∈K,hk(x, y) ≥ 0} such that

the graph of f satisfies {(x, f(x)) : x∈K}=Kf . �

Note that with the linear hypothesis class, we need an additional constraint Bx+ b ∈∆K , to

guarantee that the output f(x) is a valid probability vector for any x ∈ X . We also assume that

X is a polyhedron, i.e. X := {x ∈Rp :Ax≥ a} for some A ∈Rm×p and a ∈Rm. Then the problem

Approx-ICEO-ρ becomes:

min
B,b

1

n

n∑
i=1

c(wi, ξi) +
ρ

2
φ(wi) (Poly-Approx-ICEO-ρn)

s.t. wi = w̃ρ(Bxi + b)

Bx+ b∈∆K ,∀x∈X = {x∈Rp :Ax≥ a}
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Note that the approximated oracle w̃ρ(·) is constructed by polynomial kernels, so the first group of

constraints are polynomial functions. Then we show that the second group of constraints can be

reformulated to a group of linear constraints using the following proposition.

Proposition 4. Suppose X := {x ∈ Rp : Ax ≥ a} for some A ∈ Rm×p and a ∈ Rm, then the

constraint

Bx+ b∈∆K ,∀x∈X

can be rewritten as the following group of constraints by introducing new decision variables yk ∈
Rm, k= 1, . . . ,K, z,u∈Rm 

aTyk ≥−bk ∀k= 1, . . . ,K

ATyk =Bk ∀k= 1, . . . ,K

aT z ≥ 1−1T b
AT z =BT1

aTu≥−1 +1T b

ATu=−BT1

yk, z, u≥ 0 ∀k= 1, . . . ,K

(35)

We have now shown that problem (Poly-Approx-ICEO-ρn) is a problem optimizing a basic semi-

algebraic function on a basic semi-algebraic set which, by Proposition 11.10 of Lasserre (2015), can

be reformulated as a polynomial optimization problem, which can be solved by solving a hierarchy

of semi-definite problems.

5. Numerical Experiments

In this section, we demonstrate the numerical performance of our proposed ICEO framework using

synthetic data. We first summarize the benchmark methods that we adopted for comparison:

1. Sample average approximation (SAA). In this benchmark, the decision-maker simply ignores

the contextual features then minimizes the average of cost functions using empirical distribu-

tion of the observations of the random parameter.

2. The two-step predict-then-optimize (PTO) method. In this benchmark, we estimate the

hypothesis f ∈H using a cross-entropy loss function instead of the downstream optimization

goal.

3. The prescriptive method (PRES) proposed in Bertsimas and Kallus (2020). We consider KNN-

based (PRES-KNN) and kernel-based (PRES-Kernel).

4. The stochastic optimization forest (SO-Forest) proposed in Kallus and Mao (2020).

As for our proposed ICEO method, we find the best hypothesis class by solving (Approx-ICEO-ρ)

using gradient-base algorithms. More details of the approximated oracle and the optimization

algorithm can be fond in Section 5.1.



Grigas, Qi, Shen: Integrated Conditional Estimation-Optimization 31

5.1. Multi-item Newsvendor Problem

We consider the multi-item newsvendor problem, as in Example 1, with synthetic data. In this

setting, we consider d= 2, which is the case where the newsvendor jointly decides the order quan-

tities of two products with an overall budget of 50. The decision variable w ∈ R2 and random

demand ξ ∈R2 are both two-dimensional, corresponding to the order quantity and demand of the

two products. The newsvendor aims to minimize the total inventory cost as formulated in (4), with

unit overstock costs h1 and h2 set to 1 and 1.3 and unit stockout cost b1 and b2 set to 9 and 8 for

the two products, respectively.

Data Generation Process. The synthetic data is generated in the following manner. The fea-

tures xi ∈ Rp are generated independently following the multi-variate Gaussian distribution xi ∼

N(0,MIp) for some constant M > 0 and where Ip is an identity matrix. Then we consider K = 4

scenarios for the demand ξi ∈R2, i.e., Ξ = {z̃1, z̃2, z̃3, z̃4}. Then, the corresponding conditional prob-

ability vector of ξi is generated according to soft((B∗xi+ b∗)deg), with B∗ ∈RK×p, b∗ ∈RK and deg

a positive integer being parameters set before the data generation process. Then, ξi takes the value

of z̃k with probability p∗k(x) = soft((B∗xi + b∗)deg)k for all k= 1, . . . ,K.

Optimal Solution Mapping Approximation. The optimal oracle is approximated using neural

networks in the experiment. We first generate a data set {(pi,wi)}mi=1 by uniformly sampling pi

from the simplex ∆K and then generating wi :=wρ(pi). Then we train a neural network with one

hidden layer to approximate the oracle. The neural network is trained with respect to the mean

absolute percentage error (MAPE) loss.

ICEO Hypothesis Learning. In this experiment, we consider two candidate hypothesis classes for

H. First, we consider a softmax function composed with a linear function class, whereby H1 :=

soft ◦ H̃1 and H̃1 := {x 7→Bx+ b0 :B ∈RK×p, b ∈RK}. The other case is H2 := soft ◦ H̃2 where H̃2

denotes a neural network with one-hidden layer. When the degree parameter deg of the data gen-

eration process is higher than one, then there is a model misspecification when learning the ICEO

hypothesis with H1 since the true hypothesis f∗(x) := soft((Bxi + b)deg) is not in the hypothesis

class H1 when deg> 1. For both hypothesis class, we apply Adam optimization algorithm (Kingma

and Ba (2014)) while learning the hypothesis.

Comparison with Benchmarks: Results. In this experiment, we consider {z̃1 := (33,15), z̃2 :=

(71,4), z̃3 := (17,47), z̃4 := (4,43)}, M = 5, and each element of B is an integer between 0 and 150.

We consider regularization coefficient ρ= 0.01 and deg = 1. We consider multiple training set sizes

n ∈ {100,300,500,700} and for every value of n, we run 25 simulations. We use a validation set

to tune the hyper-parameters for KNN, Kernel and SO-forest and the ICEO method. To evaluate

out-of-sample performances of all these methods, we generate a test set including 1000 samples in
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each simulation. We would like to emphasize that we evaluate the newsvendor cost (4) rather than

the ICEO objective with regularization.

Figure 2 demonstrates the performance of the ICEO method and the non-parametric bench-

marks. As demonstrated in this plot, the performance of ICEO method outperforms other bench-

marks when the sample size is greater than 300. Even when the sample size is small, the performance

of the ICEO method is comparable to the best of the benchmark (KNN). When compared with

non-parametric prescriptive methods, our method shows the benefit of modeling the underlying

conditional distribution.
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Figure 2 Comparison of ICEO with non-parametric methods

Model Misspecification: Results We also investigate the case of model misspecification when we

consider the softmax linear hypothesis class H1. Since the ICEO method and the PTO (Entropy)

methods are the only two methods that involves modeling the underlying conditional distribution

using this hypothesis class, we only compare the performance of these two methods. To evaluate

the performance of both methods, we consider the newsvendor cost on a test set with size 1000 in

each simulation. To better quantify the improvement of ICEO compared to Entropy, we define the

improvement cost(Entropy)−cost(ICEO)

cost(Entropy)
. In Figure 3a, we show the performance of the ICEO method

compared to the two-step Entropy method and Figure 3b demonstrates the improvement of the

ICEO method as compared to the Entropy method. As we can see, under model misspecification,

ICEO constantly outperforms two-step Entropy method and the advantage increases when the
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degree of model misspecification increases. Both plots demonstrate the advantage of considering

ultimate optimization goal while estimating the conditional distribution. Besides, the readers may

note a decreasing trend of the out-of-sample cost for both methods in Figure 3a. It is because as

the degree of model misspecification increase, the components in the probability vector tends to

be binary. In other words, with higher degree if model misspecification, the demand becomes more

deterministic, which makes it easier for both methods to learn the conditional demand distribution.
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(a) Out-of-sample performance
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Figure 3 Comparison between ICEO and Entropy under model mis-specification

6. Conclusion

In this paper, we propose a new framework for estimating the underlying conditional distribution

in contextual stochastic optimization. The proposed ICEO framework uses a flexible hypothesis

class and learn the hypothesis by incorporating the downstream optimization goal.

The ICEO framework developed herein applies to the case where the random parameter is a

discrete random variable and the nominal optimization problem is convex. To address the issue that

the optimal solution oracle may have multiple outputs, we consider an additional strongly convex

decision regularization function for both the oracle and the ICEO objective. We then prove that

the ICEO method is asymptotically consistent and provide finite-sample analysis in the form of

generalization bounds. Moreover, we investigate the non-differentiability of the regularized optimal

solution oracle which often leads to computational difficulties in calculating the gradients and poor

local minima that are hard to escape. We address this issue by approximating the regularized

oracle using differentiable functions. We then provide possible approximation error bounds and the

corresponding generalization bounds when using the approximated oracle. For the cases when the

nominal optimization problem is semi-algebraic, and when the approximated oracle is constructed
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using polynomial functions, the ICEO problem can be reformulated as a polynomial optimization

problem and thus solved for the optimal solution up to arbitrary accuracy by solving a hierarchy

of semi-definite problems.

Naturally, there are many potential directions to investigate for future work. One possible direc-

tion is to generalize the ICEO framework to the infinite dimensional case where the random

parameter is a continuous random variable. Besides, one may also investigate the ICEO framework

in the high-dimensional setting or when the data is non-stationary.
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Appendix A: Supplementary Lemmas and Proofs

Lemma 1. W (·, ·), as defined in is a convex valued upper semi-continuous correspondence, i.e., W (f,x)

is a convex set for any fixed x∈X and f ∈H.

Proof of Lemma 1 The objective function
∑K

k=1 fk(x)ck(w) is a convex function in w for given x and

f because c(w, z̃k) is convex of w for all z̃k, k = 1, . . . ,K. Since S is convex, we can apply the Maximum

theorem (see part 1 of Theorem 9.17 in Sundaram et al. (1996)) to achieve the desired conclusion �

Lemma 2. For any ρ> 0, wρ(·, ·) is a single-valued correspondence, hence a continuous function in x and

f .

Proof of Lemma 2 From part 2 in Theorem 9.17 of Sundaram et al. (1996), the mapping w(p) : ∆k→ S

is a continuous function of p. As p= f(x) for any x∈X and f ∈F , w(·, ·) is a continuous function in x and

f . �

Proof of Proposition 4: We first consider the constraint BTx+ b≥ 0,∀x, s.t. Ax≥ a is equivalent to

0≤min BT
k x+ bk (36)

s.t. Ax≥ a (37)

for all k= 1, . . . ,K. Then consider the dual of (36)-(37)

−bk ≤max aT yk

s.t. AT yk =Bk

yk ≥ 0

which reduces to find a feasible solution of the following group of constraints
aT yk ≥−bk
AT yk =Bk
yk ≥ 0

(38)

for all k= 1, . . . ,K.

Then the normalization constraint 1T (Bx+ b)≥ 1,∀x, s.t.Ax≥ a is equivalent to

1≤min 1TBx+1T b (39)

s.t. Ax≥ a, (40)

similarly by considering the dual problem

1−1T b≤max aT z

s.t. AT z =BT1

z ≥ 0,

which reduces to the following group of constraints
aT z ≥ 1−1T b
AT z =BT1

z ≥ 0.

(41)
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Finally, the constraint 1T (Bx+ b)≤ 1,∀x, s.t.Ax≥ a is equivalent to

1≥max 1TBx+1T b (42)

s.t. −Ax≤−a (43)

by strong duality, it is equivalent to

1−1T b≥min − aTu

s.t. −ATu=BT1

u≥ 0

which reduces to 
aTu≥−1 +1T b

ATu=−BT1

u≥ 0.

(44)
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